
Detection of Faulty Sensors in Wireless Sensor
Networks and Avoiding the Path Failure Nodes

Pinak S. Patel
M.E. Student, GTU

PIET, Limda, Tal. Waghodia,
Vadodara, Gujarat (India)

Asst. Prof Mohammed Husain Bohara
Computer Science and Engineering Dept.

PIET, Limda, Tal. Waghodia,
Vadodara, Gujarat (India)

Binita D. Chahwala
M.E. Student, GTU

PIET, Limda, Tal. Waghodia,
Vadodara, Gujarat (India)

Abstract— For variety of applications, Wireless Sensor

Networks (WSNs) have become a new information collection
and a monitoring solution. Faults occurring due to sensor
nodes are common due low-cost sensors used in WSNs,
deployed in large quantities and prone to failure. The goal of
this paper is to detect faulty sensors in WSNs and avoiding the
path failure nodes. Fault detection is based on the local pair-
wise verification between the sensors monitoring the same
physical system. Specifically, a linear relationship is shown
between the output of any pair of sensors, when the input of a
system comes from a common source. Using this relationship,
faulty sensors may be detected by using forecasting model
based on the parameter (i.e., temperature) and it also
identifies which sensor is normal or abnormal. After the fault
nodes are detected, first of all disable all the faulty nodes so
that network is not affected by erroneous reading and send
the information to the base station. Due to the nature of
proposed algorithm, it can be scaled to large sensor networks
and also saves energy from reduced wireless communication
compared to the centralized approaches.

Keywords—Fault detection, Forecasting, Wireless Sensor
Networks (WSNs).

I. INTRODUCTION
Recent advances in communication technology and

embedded systems has resulted in wireless sensors that are
smaller in size, consume less power and achieve higher
transmission rates. By adopting wireless sensor networks
(WSNs), the cost of monitoring systems, such as structural
and environmental monitoring systems is greatly reduced
due to the eradication of expensive wiring. However, small
form factors and low costs also render wireless sensors more
susceptible to faults and failures. To ensure wireless sensor
networks are reliable over long periods of service,
automated detection and identification of sensor faults must
be an integral part of their design and operation, especially
for applications where the monitoring system is unattended
after deployment. With most wireless sensors limited in
both energy and processing capacity it is highly desirable to
design energy efficient and low complexity fault detection
algorithms that can be embedded directly into the wireless
sensors for in-network execution.

The WSN is built of “nodes”- from a few to several
hundreds or even thousands, where each node is connected
to one (or sometimes several) sensors [10]. Each such
sensor network node has typically following parts: Radio
Transceiver, for transmitting and receiving radio signals.
Sensors, for sensing of physical or environmental
conditions. Microcontroller, for interfacing with the sensors

and for necessary computation. Energy Source, it is usually
a battery or an embedded form of energy harvesting.

R. Da and C. Lin [4], presents a new approach for
detecting sensor failures which affect only subsets of system
measurements. In addition to a main Kalman filter, which
processes all the measurements to give the optimal state
estimate, a bank of auxiliary Kalman filters is also used,
which process subsets of the measurements to provide the
state estimates which serve as failure detection references.
After the statistical property of the difference between the
state estimate of the main Kalman filter and those of the
auxiliaries is derived with an application of the orthogonal
projection theory, failure detection is undertaken by
checking the consistency between the state estimate of the
main Kalman filter and those of the auxiliaries by means of
the chi-square statistical hypothesis test.

V. Ricquebourg [5], proposed a sensor failure detection
method based on the fusion of predicted and observed
sensor data. In these approach, Ricquebourg use the Markov
Chain to model normal behavior of sensor within the TBM
framework. When fusion between predicted and observed
data is done, three experts analyze conflict resulting from
the fusion process and are able to detect an abnormal
behavior of the sensor by looking for high increase of
conflict. The testing results show that this method is
efficient to detect sensor failure with a TBM approach.

Gayathri Venkataraman [6], presents a large number of
sensor nodes in wireless sensor network, it is common for
sensor nodes to become faulty and unreliable. Faults mainly
result from systems or communication hardware failure and
the fault state is continuous in time. In this paper, we
consider permanent faults only, means faults occur due to
battery depletion, which when not noticed would cause loss
in connectivity and coverage. In this paper a cluster based
fault management schemes which identify and rectifies the
problems that occur due to energy depletion in sensor nodes.
The connectivity is still maintained by reorganization of
cluster, when a sensor node fails. By using clustering
approach, it restricts the number of nodes in each cluster and
number of next hop neighbours a node can have and it is
used to produce energy efficient clusters.

Wireless sensor networks have been applied in various
areas, such as environment and habitat monitoring,
condition based equipment maintenance, disaster
management, and emergency responses, but due to low cost
and large number of nodes, it may prune to failure [3]. Our
adopted approach is the mutual testing method at processor

Pinak S. Patel et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3569-3574

www.ijcsit.com 3569

level where each processing elements is capable of testing
its neighbours and generates a result based on the success of
the test results. The test result may be arbitrary because the
tester itself can be faulty. A processor is identified to be
good or faulty by knowing the collection of test results.
However the topology of wireless sensor networks is not
regular, each sensor must maintain a certain number of
neighbours that is the degree of the network must be high.
Jinran Chen [7], proposed a distributed localized faulty
sensor (DLFS) detection algorithm where each sensor
identifies its own status to be “good” or “faulty” and it claim
is then supported or reverted by its neighbours as they also
evaluate node behavior. The algorithm is analyzed using
probabilistic approach; it contains the probabilities of faulty
sensors being diagnosed as “good” and good sensors not
being diagnosed as “good”, because they are very low in
entire sensor network.

In recent years, sensors are usually simple, low-cost
devices, deployed in large quantities, and prone to failure.
Chun Lo [2], presents a model-free and reference-free spike
fault identification method based on pair-wise verification.
When the input of a system comes from a common source,
there is a linear relationship between the output of any pair
of sensors. This linear relationship between sensor pairs can
be obtained through training. We present a method which is
able to find faulty sensors suffering from sparse spikes in
their outputs by pairwise comparisons even though there is
no knowledge of which sensor is normal or abnormal, and
no knowledge of the common input.

Chun Lo [1], proposed a novel fault detection method
which utilizes system redundancy but without requiring
knowledge of a physics-based system model or the
existence of reference sensors is proposed. If in a network
all the sensors are faulty, it will not affect the algorithm
performance. The method is especially well suited for
resource constrained WSNs because the detection algorithm
is run locally by each wireless sensor node resulting in
reduced communication demand compared to existing
centralized methods. Under certain conditions, knowledge
of system inputs is not necessary for the detection algorithm
to work. The method is capable of detecting general faults
within arbitrary pairs of sensors (i.e., subsystems).
However, the method is further specialized to identify spike
faults [9] from other type of faults with the aim of detecting
and quantifying (e.g., location, magnitude) spikes so that
they could be removed during post processing.

In this paper, we identify the fault nodes in wireless
sensor networks and maintain the reliability in the base
station. For wireless sensor networks to identify fault in
sensors, where each sensor nodes are grouped into zones
and each sensor nodes are routing to the base station.

The remainder of this paper is organized as follows. In
Section II, theory for fault detection is stated using linear
relationship between pair of sensors. In Section III, the
architecture of proposed work is shown with explanation. In
Section IV, specifies the whole system in diagram and
results for fault detection. Finally, the conclusion of paper is
in Section V with a detail summary and a discussion of
future research efforts.

II. THEORETICAL BACKGROUND AND PAIR-WISE

LINEAR RELATIONSHIPS: FOR FAULT DETECTION

 Construct Linear, Time Invariant (LTI) Models [8], the
discrete-time state-space model for a time series is given by
the following equations:

 x(kT+T) = Ax(kT)+Ke(kT) (1)

 y(kT) = Cx(kT)+e(kT) (2)
where T is the sampling interval and y(kT) is the output at
time instant kT. A, C and K are the matrices and k is a
constant. The time-series structure corresponds to the
general structure with empty B and D matrices. The state-
space format is convenient if your model is a set of LTI
differential and algebraic equations. For example, consider
the following linearized model of a continuous stirred-tank
reactor (CSTR) involving an exothermic (heat-generating)
reaction.

 (3)

 (4)

where is the concentration of a key reactant, T is the
temperature in the reactor, is the coolant temperature,
 is the reactant concentration in the reactor feed, and
 and are constants. Fig. 1 shows the process
for CSTR Schematic. The primes (e.g.,) denote a
deviation from the nominal steady-state condition at which
the model has been linearized.

Fig. 1. CSTR Schematic [8]

Measurement of reactant concentrations is often difficult, if
not impossible. Let us assume that T is a measured output,
is an unmeasured output, is a manipulated variable,
and is an unmeasured disturbance.
The model fits the general state-space format

 (5)

 y = Cx + Du (6)

where, x = u = y = ,

 A = B =

 C = D =

Pinak S. Patel et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3569-3574

www.ijcsit.com 3570

This defines a continous time state-space model. If you
don’t specify a sampling period, a default sampling value
of zero applies. You can also specify discrete-time state-
space models. You can specify delays in both continuous-
time and discrete-time models.
 From the filtered data, spikes are usually detected using
an amplitude threshold. The choice of the threshold is a
compromise between: i) missing spikes if a high threshold
is used (Type II error) and ii) getting false positives due to
noise crossing a low threshold (Type I error). An adequate
threshold can be set manually, as done in most systems
with on-line spike detection. However, an automatic
threshold is preferable, especially when processing large
number of channels.
The AutoRegressive with eXogenous input (ARX) time-
series model is defined [8], as follows:
y(t) + + …. + =

 + …. + + e(t)

(7)
where,

 y(t) is the output at time .
 and are the parameters to be

estimated.
 is the number of poles of the system.
 is the number of zeros of the system.
 is the number of input samples that occur

before the inputs that affect the current output.
 y(t - 1)…y(t -) are the previous outputs on

which the current output depends.
 u(t -)…u() are the previous

inputs on which the current output depends.
 e(t) is a white-noise disturbance value.

The ARX model in Fig. 2 can also be written in a compact
way using the following notation:

A(q)y(t) = B(q) u(t - + e(t) (8)
Where,
 A(q) = 1+

 B(q) =

And is the backward shift operator, defined by,

Fig. 2. ARX model structure [8]

Input: The block accepts two inputs, corresponding to the
measured input-output data for estimating the model. First
input: Input signal, Second input: Output signal. Output:
The ARX Estimator block outputs a sequence of multiple
models, estimated at regular intervals during the
simulation.

 Consider a set of wireless sensors attached to a time-
invariant physical system. Since sensor responses all
depend on the common physical system, a linear
relationship exists between the system outputs measured by
these sensors. Specifically, sensors can pair up and check
whether their outputs are consistent with this linear
relationship; inconsistencies can then be used to determine
whether one or both of the sensors may be faulty. This pair
wise comparison can be performed between any pair of
sensors and only the result of the comparison needs to be
conveyed to the base station or a central processing node in
the WSNs. The structure of the proposed algorithm is
illustrated in Fig. 3. The algorithm can be separated into a
training (also called “model parameter identification”)
phase and a detection phase. During the training phase,
each sensor node learns the relationship between itself and
each of its neighbours. For example, in Fig. 3(a), sensor 2
broadcasts its measurement data to neighbouring sensors 1
and 3. After the data is received, sensors 1 and 3 calculate
the relationship between their outputs and sensor 2’s output
[Fig. 3(b)]. This model parameter identification process is
performed by each sensor one after another and the results
are stored locally, as shown in Fig. 3(c). During the
detection phase, the network is partitioned into pairs of
neighbouring sensors; this can be done centrally or in a
distributed fashion. Each pair of sensors then performs a
comparison according to their trained relationship. Fig. 3(d)
shows a network partitioned into 3 pairs: {1, 2}, {2, 3} and
{4, 5}. For example, consider sensor pair {1, 2}. Sensor 2
first transmits its output to its partner, sensor 1. Sensor 1
then checks whether its measured output agrees with the
output predicted by the previously trained relationship [Fig.
3(e)]. Finally, each sensor pair will report its results to the
base station [Fig. 3(f)].

Fig. 3. During training: (a) each sensor broadcasts its output, (b) linear
relationship between sensor pairs is calculated, and (c) finally pair-wise
linear relationships of the network are constructed. For fault detection: (d)
base station divides the sensor network into pairs, (e) each pair performs
the fault detection method, and (f) each pair sends their results, e, back to
the base station (B.S.).

Pinak S. Patel et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3569-3574

www.ijcsit.com 3571

Limitations of Existing System:
Solution by Chun Lo[1] , proposed a novel fault detection
method which utilizes system redundancy but without
requiring knowledge of a physics-based system model or
the existence of reference sensors is proposed. If in a
network all the sensors are faulty, it will not affect the
algorithm performance. The method is especially well
suited for resource constrained WSNs because the detection
algorithm is run locally by each wireless sensor node
resulting in reduced communication demand compared to
existing centralized methods. Under certain conditions,
knowledge of system inputs is not necessary for the
detection algorithm to work. The method is capable of
detecting general faults within arbitrary pairs of sensors
(i.e., subsystems).
The solution of Chun Lo only addresses how to identify the
faulty sensors. The recovery process is not addressed.

III. PROPOSED WORK
Theory or Steps of Open Forecast [11] , is as follows,

1) Create a DataSet object.
2) Add to the data set object a series

of DataPoint objects that define a series of observations.
3) Using the static getBestForecast method

of Forecaster, obtain a reference to the most appropriate
forecast model for your data set.

4) Use the forecast method of this ForecastingModel to
forecast additional values.

Create a DataSet object
A DataSet is simply a collection of DataPoint objects. In
many respects, you can think of it as just another
Java2 Collection. In fact, the DataSet class does implement
the java.util.Collection interface. You can create a new
DataSet object directly, as follows:

 DataSet observations = new DataSet();
Add DataPoints to the DataSet
Once you have a data set, you can begin to add
DataPoint objects to it, using the DataSet add method.
There are primarily two ways of
defining DataPoint objects. If you already have your
observations/data points defined in some Java class, you
could extend or modify that class to implement
the DataPoint interface. Alternatively, OpenForecast
provides an implementation of the DataPoint interface
called, Observation. The Observation class is most
convenient if you don't currently have an implementation of
your observation data.
Using the Observation class
The Observation class provides a complete implementation
of the DataPoint interface. Consider the quarterly sales of a
company product to be $500 (thousand) for period 1, $600
(thousand) for period 2, and $700 (thousand) for period 3
for creating 3Observation objects representing these
observations.
Note that the Observation constructor takes a single value.
This value is the dependent value - the value we observe
initially, but later want to forecast. After creating a
new Observationobject, we then invoke the
setIndependentValue method for each independent value

associated with the observation. In this case, we have just
one independent variable, and that is, "quarter". Therefore,
for each observation we must set the value of the
independent variable, quarter, to the appropriate value.
Note that the independent variable name, quarter, used in
each of the observations must be exactly the same among
the different observations if they really refer to the same
independent variable. Next, we must add these to
our DataSet. If, in addition, we expect that the average
daytime high temperature for the quarter has an influence
on sales, then we can add the value of this independent
variable to each observation. For example, if we knew the
average daytime high temperatures for quarters 1, 2 and 3
were 45°F, 63°F and 97°F respectively, then we could
define the three observations.
Obtain a ForecastingModel
Now that we have a set of DataPoint objects defining our
observations, we need to obtain a ForecastingModel. Two
primary approaches are available here. The first approach
requires little knowledge of the different forecasting
models available and, in general, is the preferred approach.
The second approach to obtaining a ForecastingModel is to
decide which model to use, and instantiate it directly. This
provides for selection of a specific model, however, the
trade-off is that you may not necessarily get the model that
best fits your data.
Generate forecasts
Defining the forecast data set,
To obtain a forecast for other data points, you first need to
decide - or otherwise determine - what data points you want
to produce a forecast for. Using the quarterly sales
examples from the section called Using the Observation
class, say that we want to produce quarterly sales forecasts
for quarters 4 and 5 (the first quarter in the following year).
Then we'd need to define two data points, as before, but
referring to quarters 4 and 5. Note that we initialize the
dependent value for each DataPoint to 0.0. It really doesn't
matter what value is used here because the dependent value
- the value that we intend to forecast - will be updated when
we call forecast. Once we have created the
required DataPoint objects, we gather them together in a
data set, fcDataSet.
Obtaining Forecast values,
Once we have defined a data set containing the data points
for which we require forecasts of the dependent values, all
that is necessary is to pass this to model's forecast method.
For convenience, the forecast method returns
the DataSet passed in, that will have been updated with the
new forecast values. However, since it is the same as the
one passed in, it is not uncommon to ignore the return
value.
The solution of Chun Lo only addresses how to identify the
faulty sensors, but recovery process is not addressed. The
transmission must be stopped after identifying faulty
sensor. This requires the role of base station. So we are
trying to propose a mechanism for communication of fault
information in the network & disabling of the faulty
sensors so that the network is not affected by erroneous
reading from the faulty devices.

Pinak S. Patel et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3569-3574

www.ijcsit.com 3572

The Fig. 4 explain the system flow. First we configure a
network and create a new network specifying the number
of nodes and range for which each node can communicate
with its neighbours within a given range. These nodes are
divided into zones. If some event has been triggered in one
or more zones, then select that zones using zoneid and it
will show all the nodes in that particular zone, than indicate
that event (i.e. checking of faulty nodes). It also includes
updating queue and forecast the next value. Queue may
contain at least five or more observations for forecasting
the next value. Check triggered value against forecasted
value, if it is out of threshold value than that node will be
assumed as faulty or if the value of node is within threshold
than we can say that it is working properly. So if the node
is identified as faulty, than the base station will not accept
the data from faulty node, so the network is not affected by
erroneous reading from faulty devices.

Fig. 4. System Architecture

A novel fault detection method is capable of detecting
general faults within arbitrary pairs of sensors (i.e.
subsystems). For evolution of algorithm, temperature is the
best parameter still we have chosen forecast as a parameter
to evaluate algorithm. Forecast value is the average value
of the readings of temperature taken by each node.

IV. SEQUENCE DIAGRAM OF SYSTEM OPERATION &

RESULTS

A sequence diagram in Unified Modeling Language
(UML) is a kind of interaction diagram that shows how
processes operate with one another and in what order. It is a
construct of a Message Sequence Chart. Fig. 5 and Fig. 6
shows the total flow for network creation and successful
operation.

Fig. 5. Network Creation Sequence diagram

Fig. 6. Succesful Operation Sequence diagram

Expected outcome of proposed work:
To identify faulty nodes in the network and what
information is provided by faulty nodes will not be
considered by the base station. Means if any event is
triggered on faulty node will not be accepted by the base
station.

Fig. 7. Average Fault Detection Graph

In these graph, its shows the average fault detection from
the number of nodes specified by user. Here user created a
sensor network for hundred nodes and on checking of fault
detection, it finds two nodes as faulty and the graph is as
shown in fig. 7.

Pinak S. Patel et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3569-3574

www.ijcsit.com 3573

V. CONCLUSION
 In this survey we consider an ARX-based spike fault
detection method which does not require the system-input
information or a priori establishment of reference sensors is
proposed for LTI physical systems. The method is based on
pair-wise relationships of sensors, and these relationships
are learned online when the system is functioning normally.
Moreover, the proposed method is able to identify all of the
faulty sensors and Communication of fault information in
network. Through Simulation we are blocking the faulty
nodes and the fault node information is send to the base
station. This method gives good performance; it only loses
part of its effectiveness under situations where a pair of
sensors is highly correlated. Further research will be done
to develop a method to separate types of fault occurs when
the nodes become faulty and also try to recover that fault.

REFERENCES
[1] Chun Lo, Student Member, IEEE, Jerome P. Lynch,

Member, IEEE, and Mingyan Liu, Senior Member,
“Distributed Reference-Free Fault Detection Method for
Autonomous Wireless Sensor Networks”, IEEE SENSORS
JOURNAL, VOL. 13, NO. 5, MAY 2013.

[2] Ph.D. Candidate Chun Lo, Assoc. Prof. Jerome P. Lynch,
Ph.D. Assoc. Prof. Mingyan Liu, Ph.D., “Reference-free

Detection of Spike Faults in Wireless Sensor Networks”,
978-1-4244-9293-0/11/$26.00 ©2011 IEEE.

[3] E.chow and A.Willsky, ”Analytical redundancy and the
design of robust failure detection systems”, IEEE Trans.
Automat. Control, vol. 29,no. 7,pp. 603-614, Jul. 1984.

[4] R. Da and C. Lin, “Sensor failure detection with a bank of
kalman filters”, in Proc., Amer. Control Conf., vol. 2. 1995,
pp. 1122–1126.

[5] V. Ricquebourg, D. Menga, M. Delafosse, B. Marhic, L.
Delahoche, and A. Jolly-Desodt, “Sensor failure detection
within the tbm framework: A markov chain approach”, in
Proc. Inform. Process. Manag. Uncertain., vol. 8. 1991, p.
323.

[6] Gayathri Venkataraman, Sabu Emmanuel, Srikanthan
Thambipillai, “A Cluster-Based Approach to Fault Detection
and Recovery in Wireless Sensor Networks”, IEEE ISWCS
2007, 1-4244-0979-9/07/$25.00 © 2007 IEEE.

[7] Jinran Chen, Shubha Kher, and Arun Somani, “Distributed
Fault Detection of Wireless Sensor Networks”, Dependable
Computing and Networking Lab Iowa State University
Ames, Iowa 50010.

[8] Linear-time-invariant-lti-models, time-series-model, arx,
“www.mathworks.in”

[9] Spike_sorting, “www.scholarpedia.org”
[10] Wireless Sensor Network, “http://en.wikipedia.org”
[11] Open Forecast, “http://www.stevengould.org”

Pinak S. Patel et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3569-3574

www.ijcsit.com 3574

