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Abstract— For variety of applications, Wireless Sensor 

Networks (WSNs) have become a new information collection 
and a monitoring solution. Faults occurring due to sensor 
nodes are common due low-cost sensors used in WSNs, 
deployed in large quantities and prone to failure. The goal of 
this paper is to detect faulty sensors in WSNs and avoiding the 
path failure nodes. Fault detection is based on the local pair-
wise verification between the sensors monitoring the same 
physical system. Specifically, a linear relationship is shown 
between the output of any pair of sensors, when the input of a 
system comes from a common source. Using this relationship, 
faulty sensors may be detected by using forecasting model 
based on the parameter (i.e., temperature) and it also 
identifies which sensor is normal or abnormal. After the fault 
nodes are detected, first of all disable all the faulty nodes so 
that network is not affected by erroneous reading and send 
the information to the base station. Due to the nature of 
proposed algorithm, it can be scaled to large sensor networks 
and also saves energy from reduced wireless communication 
compared to the centralized approaches. 

Keywords—Fault detection, Forecasting, Wireless Sensor 
Networks (WSNs). 

I. INTRODUCTION 
Recent advances in communication technology and 

embedded systems has resulted in wireless sensors that are 
smaller in size, consume less power and achieve higher 
transmission rates. By adopting wireless sensor networks 
(WSNs), the cost of monitoring systems, such as structural 
and environmental monitoring systems is greatly reduced 
due to the eradication of expensive wiring. However, small 
form factors and low costs also render wireless sensors more 
susceptible to faults and failures. To ensure wireless sensor 
networks are reliable over long periods of service, 
automated detection and identification of sensor faults must 
be an integral part of their design and operation, especially 
for applications where the monitoring system is unattended 
after deployment. With most wireless sensors limited in 
both energy and processing capacity it is highly desirable to 
design energy efficient and low complexity fault detection 
algorithms that can be embedded directly into the wireless 
sensors for in-network execution. 

The WSN is built of “nodes”- from a few to several 
hundreds or even thousands, where each node is connected 
to one (or sometimes several) sensors [10]. Each such 
sensor network node has typically following parts: Radio 
Transceiver, for transmitting and receiving radio signals. 
Sensors, for sensing of physical or environmental 
conditions. Microcontroller, for interfacing with the sensors 

and for necessary computation. Energy Source, it is usually 
a battery or an embedded form of energy harvesting. 

R. Da and C. Lin [4], presents a new approach for 
detecting sensor failures which affect only subsets of system 
measurements. In addition to a main Kalman filter, which 
processes all the measurements to give the optimal state 
estimate, a bank of auxiliary Kalman filters is also used, 
which process subsets of the measurements to provide the 
state estimates which serve as failure detection references. 
After the statistical property of the difference between the 
state estimate of the main Kalman filter and those of the 
auxiliaries is derived with an application of the orthogonal 
projection theory, failure detection is undertaken by 
checking the consistency between the state estimate of the 
main Kalman filter and those of the auxiliaries by means of 
the chi-square statistical hypothesis test. 

V. Ricquebourg [5], proposed a sensor failure detection 
method based on the fusion of predicted and observed 
sensor data. In these approach, Ricquebourg use the Markov 
Chain to model normal behavior of sensor within the TBM 
framework. When fusion between predicted and observed 
data is done, three experts analyze conflict resulting from 
the fusion process and are able to detect an abnormal 
behavior of the sensor by looking for high increase of 
conflict. The testing results show that this method is 
efficient to detect sensor failure with a TBM approach. 

Gayathri Venkataraman [6], presents a large number of 
sensor nodes in wireless sensor network, it is common for 
sensor nodes to become faulty and unreliable. Faults mainly 
result from systems or communication hardware failure and 
the fault state is continuous in time. In this paper, we 
consider permanent faults only, means faults occur due to 
battery depletion, which when not noticed would cause loss 
in connectivity and coverage. In this paper a cluster based 
fault management schemes which identify and rectifies the 
problems that occur due to energy depletion in sensor nodes. 
The connectivity is still maintained by reorganization of 
cluster, when a sensor node fails. By using clustering 
approach, it restricts the number of nodes in each cluster and 
number of next hop neighbours a node can have and it is 
used to produce energy efficient clusters. 

Wireless sensor networks have been applied in various 
areas, such as environment and habitat monitoring, 
condition based equipment maintenance, disaster 
management, and emergency responses, but due to low cost 
and large number of nodes, it may prune to failure [3]. Our 
adopted approach is the mutual testing method at processor 
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level where each processing elements is capable of testing 
its neighbours and generates a result based on the success of 
the test results. The test result may be arbitrary because the 
tester itself can be faulty. A processor is identified to be 
good or faulty by knowing the collection of test results. 
However the topology of wireless sensor networks is not 
regular, each sensor must maintain a certain number of 
neighbours that is the degree of the network must be high. 
Jinran Chen [7], proposed a distributed localized faulty 
sensor (DLFS) detection algorithm where each sensor 
identifies its own status to be “good” or “faulty” and it claim 
is then supported or reverted by its neighbours as they also 
evaluate node behavior. The algorithm is analyzed using 
probabilistic approach; it contains the probabilities of faulty 
sensors being diagnosed as “good” and good sensors not 
being diagnosed as “good”, because they are very low in 
entire sensor network. 

In recent years, sensors are usually simple, low-cost 
devices, deployed in large quantities, and prone to failure. 
Chun Lo [2], presents a model-free and reference-free spike 
fault identification method based on pair-wise verification. 
When the input of a system comes from a common source, 
there is a linear relationship between the output of any pair 
of sensors. This linear relationship between sensor pairs can 
be obtained through training. We present a method which is 
able to find faulty sensors suffering from sparse spikes in 
their outputs by pairwise comparisons even though there is 
no knowledge of which sensor is normal or abnormal, and 
no knowledge of the common input. 

Chun Lo [1], proposed a novel fault detection method 
which utilizes system redundancy but without requiring 
knowledge of a physics-based system model or the 
existence of reference sensors is proposed. If in a network 
all the sensors are faulty, it will not affect the algorithm 
performance. The method is especially well suited for 
resource constrained WSNs because the detection algorithm 
is run locally by each wireless sensor node resulting in 
reduced  communication demand compared to existing 
centralized methods. Under certain conditions, knowledge 
of system inputs is not necessary for the detection algorithm 
to work. The method is capable of detecting general faults 
within arbitrary pairs of sensors (i.e., subsystems). 
However, the method is further specialized to identify spike 
faults [9] from other type of faults with the aim of detecting 
and quantifying (e.g., location, magnitude) spikes so that 
they could be removed during post processing. 

In this paper, we identify the fault nodes in wireless 
sensor networks and maintain the reliability in the base 
station. For wireless sensor networks to identify fault in 
sensors, where each sensor nodes are grouped into zones 
and each sensor nodes are routing to the base station. 

The remainder of this paper is organized as follows. In 
Section II, theory for fault detection is stated using linear 
relationship between pair of sensors. In Section III, the 
architecture of proposed work is shown with explanation. In 
Section IV, specifies the whole system in diagram and 
results for fault detection. Finally, the conclusion of paper is 
in Section V with a detail summary and a discussion of 
future research efforts. 

II. THEORETICAL BACKGROUND AND PAIR-WISE 

LINEAR RELATIONSHIPS: FOR FAULT DETECTION 
 

      Construct Linear, Time Invariant (LTI) Models [8], the 
discrete-time state-space model for a time series is given by 
the following equations: 

       x(kT+T) = Ax(kT)+Ke(kT)                       (1) 
 

   y(kT) = Cx(kT)+e(kT)                            (2) 
where T is the sampling interval and y(kT) is the output at 
time instant kT. A, C and K are the matrices and k is a 
constant. The time-series structure corresponds to the 
general structure with empty B and D matrices. The state-
space format is convenient if your model is a set of LTI 
differential and algebraic equations. For example, consider 
the following linearized model of a continuous stirred-tank 
reactor (CSTR) involving an exothermic (heat-generating) 
reaction. 

       (3) 

       (4) 
 
where     is the concentration of a key reactant, T is the 
temperature in the reactor,     is the coolant temperature,              
    is the reactant concentration in the reactor feed, and                    
       and        are constants. Fig. 1 shows the process 
for CSTR Schematic. The primes (e.g.,     ) denote a 
deviation from the nominal steady-state condition at which 
the model has been linearized. 

 
Fig. 1.  CSTR Schematic [8] 

 

Measurement of reactant concentrations is often difficult, if 
not impossible. Let us assume that T is a measured output,                  
is   an unmeasured output,    is a manipulated variable,              
and         is an unmeasured disturbance. 
The model fits the general state-space format 

                                                    
                                                      (5) 

 
  y = Cx + Du                                    (6) 

 
where,  x =           u =             y =   , 
 
 
 
             A =                         B =    
 
 
             C =                D =      
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This defines a continous time state-space model. If you 
don’t specify a sampling period, a default sampling value 
of zero applies. You can also specify discrete-time state-
space models. You can specify delays in both continuous-
time and discrete-time models.  
      From the filtered data, spikes are usually detected using 
an amplitude threshold. The choice of the threshold is a 
compromise between: i) missing spikes if a high threshold 
is used (Type II error) and ii) getting false positives due to 
noise crossing a low threshold (Type I error). An adequate 
threshold can be set manually, as done in most systems 
with on-line spike detection. However, an automatic 
threshold is preferable, especially when processing large 
number of channels. 
The AutoRegressive with eXogenous input (ARX) time-
series model  is defined [8], as follows: 
y(t) +                        + …. +                             =  
 
 + …. +                                                + e(t)                          

(7) 
where, 

 y(t) is the output at time . 
                    and            are the parameters to be 

estimated. 
        is the number of poles of the system. 
                 is the number of zeros of the system. 
         is the number of input samples that occur 

before the inputs that affect the current  output. 
 y(t - 1)…y(t -     ) are the previous outputs on 

which the current output depends. 
 u(t -    )…u(                             ) are the previous 

inputs on which the current output depends. 
 e(t) is a white-noise disturbance value. 

 
The ARX model in Fig. 2 can also be written in a compact 
way using the following notation: 

A(q)y(t) = B(q) u(t -         + e(t)                  (8) 
Where, 
           A(q) = 1+ 
           
          B(q) =  
 
And            is the backward shift operator, defined by,  
  

 
Fig. 2.  ARX model structure [8] 

 

Input: The block accepts two inputs, corresponding to the 
measured input-output data for estimating the model. First 
input: Input signal, Second input: Output signal. Output: 
The ARX Estimator block outputs a sequence of multiple 
models, estimated at regular intervals during the 
simulation. 

      Consider a set of wireless sensors attached to a time-
invariant physical system. Since sensor responses all 
depend on the common physical system, a linear 
relationship exists between the system outputs measured by 
these sensors. Specifically, sensors can pair up and check 
whether their outputs are consistent with this linear 
relationship; inconsistencies can then be used to determine 
whether one or both of the sensors may be faulty. This pair 
wise comparison can be performed between any pair of 
sensors and only the result of the comparison needs to be 
conveyed to the base station or a central processing node in 
the WSNs. The structure of the proposed algorithm is 
illustrated in Fig. 3. The algorithm can be separated into a 
training (also called “model parameter identification”) 
phase and a detection phase. During the training phase, 
each sensor node learns the relationship between itself and 
each of its neighbours. For example, in Fig. 3(a), sensor 2 
broadcasts its measurement data to neighbouring sensors 1 
and 3. After the data is received, sensors 1 and 3 calculate 
the relationship between their outputs and sensor 2’s output 
[Fig. 3(b)]. This model parameter identification process is 
performed by each sensor one after another and the results 
are stored locally, as shown in Fig. 3(c). During the 
detection phase, the network is partitioned into pairs of 
neighbouring sensors; this can be done centrally or in a 
distributed fashion. Each pair of sensors then performs a 
comparison according to their trained relationship. Fig. 3(d) 
shows a network partitioned into 3 pairs: {1, 2}, {2, 3} and 
{4, 5}. For example, consider sensor pair {1, 2}. Sensor 2 
first transmits its output to its partner, sensor 1. Sensor 1 
then checks whether its measured output agrees with the 
output predicted by the previously trained relationship [Fig. 
3(e)]. Finally, each sensor pair will report its results to the 
base station [Fig. 3(f)]. 

 
Fig. 3.  During training: (a) each sensor broadcasts its output, (b) linear 
relationship between sensor pairs is calculated, and  (c) finally pair-wise 
linear relationships of the network are constructed. For fault detection: (d) 
base station divides the sensor network into pairs, (e) each pair performs 
the fault detection method, and (f) each pair sends their results, e, back to 
the base station (B.S.). 

Pinak S. Patel et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3569-3574

www.ijcsit.com 3571



Limitations of Existing System: 
Solution by Chun Lo[1] , proposed a novel fault detection 
method which utilizes system redundancy but without 
requiring knowledge of a physics-based system model or 
the existence of reference sensors is proposed. If in a 
network all the sensors are faulty, it will not affect the 
algorithm performance. The method is especially well 
suited for resource constrained WSNs because the detection 
algorithm is run locally by each wireless sensor node 
resulting in reduced  communication demand compared to 
existing centralized methods. Under certain conditions, 
knowledge of system inputs is not necessary for the 
detection algorithm to work. The method is capable of 
detecting general faults within arbitrary pairs of sensors 
(i.e., subsystems).  
The solution of Chun Lo only addresses how to identify the 
faulty sensors.  The recovery process is not addressed. 
 

III. PROPOSED WORK 
Theory or Steps of Open Forecast [11] , is as follows, 

1) Create a DataSet object. 
2) Add to the data set object a series 

of DataPoint objects that define a series of observations. 
3) Using the static getBestForecast method 

of Forecaster, obtain a reference to the most appropriate 
forecast model for your data set. 

4) Use the forecast method of this ForecastingModel to 
forecast additional values. 

 
Create a DataSet object 
A DataSet is simply a collection of DataPoint objects. In 
many respects, you can think of it as just another 
Java2 Collection. In fact, the DataSet class does implement 
the java.util.Collection interface. You can create a new 
DataSet object directly, as follows: 

 DataSet observations = new DataSet(); 
Add DataPoints to the DataSet 
Once you have a data set, you can begin to add  
DataPoint objects to it, using the DataSet add method. 
There are primarily two ways of 
defining DataPoint objects. If you already have your 
observations/data points defined in some Java class, you 
could extend or modify that class to implement 
the DataPoint interface. Alternatively, OpenForecast 
provides an implementation of the DataPoint interface 
called, Observation.  The Observation class is most 
convenient if you don't currently have an implementation of 
your observation data. 
Using the Observation class 
The Observation class provides a complete implementation 
of the DataPoint interface. Consider the quarterly sales of a 
company product to be $500 (thousand) for period 1, $600 
(thousand) for period 2, and $700 (thousand) for period 3 
for creating 3Observation objects representing these 
observations. 
Note that the Observation constructor takes a single value. 
This value is the dependent value - the value we observe 
initially, but later want to forecast. After creating a 
new Observationobject, we then invoke the 
setIndependentValue method for each independent value 

associated with the observation. In this case, we have just 
one independent variable, and that is, "quarter". Therefore, 
for each observation we must set the value of the 
independent variable, quarter, to the appropriate value. 
Note that the independent variable name, quarter, used in 
each of the observations must be exactly the same among 
the different observations if they really refer to the same 
independent variable. Next, we must add these to 
our DataSet. If, in addition, we expect that the average 
daytime high temperature for the quarter has an influence 
on sales, then we can add the value of this independent 
variable to each observation. For example, if we knew the 
average daytime high temperatures for quarters 1, 2 and 3 
were 45°F, 63°F and 97°F respectively, then we could 
define the three observations. 
Obtain a ForecastingModel 
Now that we have a set of DataPoint objects defining our 
observations, we need to obtain a ForecastingModel. Two 
primary approaches are available here. The first approach 
requires little knowledge of the different forecasting 
models available and, in general, is the preferred approach. 
The second approach to obtaining a ForecastingModel is to 
decide which model to use, and instantiate it directly. This 
provides for selection of a specific model, however, the 
trade-off is that you may not necessarily get the model that 
best fits your data. 
Generate forecasts 
Defining the forecast data set, 
To obtain a forecast for other data points, you first need to 
decide - or otherwise determine - what data points you want 
to produce a forecast for. Using the quarterly sales 
examples from the section called Using the Observation 
class, say that we want to produce quarterly sales forecasts 
for quarters 4 and 5 (the first quarter in the following year). 
Then we'd need to define two data points, as before, but 
referring to quarters 4 and 5. Note that we initialize the 
dependent value for each DataPoint to 0.0. It really doesn't 
matter what value is used here because the dependent value 
- the value that we intend to forecast - will be updated when 
we call forecast. Once we have created the 
required DataPoint objects, we gather them together in a 
data set, fcDataSet. 
Obtaining Forecast values, 
Once we have defined a data set containing the data points 
for which we require forecasts of the dependent values, all 
that is necessary is to pass this to model's forecast method. 
For convenience, the forecast method returns 
the DataSet passed in, that will have been updated with the 
new forecast values. However, since it is the same as the 
one passed in, it is not uncommon to ignore the return 
value. 
The solution of Chun Lo only addresses how to identify the 
faulty sensors, but recovery process is not addressed. The 
transmission must be stopped after identifying faulty 
sensor. This requires the role of base station. So we are 
trying to propose a mechanism for communication of fault 
information in the network & disabling of the faulty 
sensors so that the network is not affected by erroneous 
reading from the faulty devices. 
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The Fig. 4 explain the system flow. First we configure a 
network and create a new network specifying the number 
of nodes and range for which each node can communicate 
with its neighbours within a given range. These nodes are 
divided into zones. If some event has been triggered in one 
or more zones, then select that zones using zoneid and it 
will show all the nodes in that particular zone, than indicate 
that event (i.e. checking of faulty nodes). It also includes 
updating queue and forecast the next value. Queue may 
contain at least five or more observations for forecasting 
the next value. Check triggered value against forecasted 
value, if it is out of threshold value than that node will be 
assumed as faulty or if the value of node is within threshold 
than we can say that it is working properly. So if the node 
is identified as faulty, than the base station will not accept 
the data from faulty node, so the network is not affected by 
erroneous reading from faulty devices.   
 

 
Fig. 4.   System Architecture 

 
A novel fault detection method is capable of detecting 
general faults within arbitrary pairs of sensors (i.e. 
subsystems). For evolution of algorithm, temperature is the 
best parameter still we have chosen forecast as a parameter 
to evaluate algorithm. Forecast value is the average value 
of the readings of temperature taken by each node.  
 

IV. SEQUENCE DIAGRAM OF SYSTEM OPERATION & 

RESULTS 
 

A sequence diagram in Unified Modeling Language 
(UML) is a kind of interaction diagram that shows how 
processes operate with one another and in what order. It is a 
construct of a Message Sequence Chart. Fig. 5 and Fig. 6 
shows the total flow for network creation and successful 
operation.  

 
Fig. 5.  Network Creation Sequence diagram 

 

 
Fig. 6.  Succesful Operation Sequence diagram 

 
Expected outcome of proposed work: 
To identify faulty nodes in the network and what 
information is provided by faulty nodes will not be 
considered by the base station. Means if any event is 
triggered on faulty node will not be accepted by the base 
station. 

 
Fig. 7.  Average Fault Detection Graph 

 

In these graph, its shows the average fault detection from 
the number of nodes specified by user. Here user created a 
sensor network for hundred nodes and on checking of fault 
detection, it finds two nodes as faulty and the graph is as 
shown in fig. 7.  
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V. CONCLUSION 
      In this survey we consider an ARX-based spike fault 
detection method which does not require the system-input 
information or a priori establishment of reference sensors is 
proposed for LTI physical systems. The method is based on 
pair-wise relationships of sensors, and these relationships 
are learned online when the system is functioning normally. 
Moreover, the proposed method is able to identify all of the 
faulty sensors and Communication of fault information in 
network.  Through Simulation we are blocking the faulty 
nodes and the fault node information is send to the base 
station. This method gives good performance; it only loses 
part of its effectiveness under situations where a pair of 
sensors is highly correlated. Further research will be done 
to develop a method to separate types of fault occurs when 
the nodes become faulty and also try to recover that fault. 
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